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Abstract
This paper is the last of a series of three articles presenting a classification of
Vornoi and Delone tilings determined by point sets �(�) (‘quasicrystals’), built
by the standard projection of the root lattice of type A4 to a two-dimensional
plane spanned by the roots of the Coxeter group H2 (dihedral group of order 10).
The acceptance window � for �(�) in the present paper is a regular decagon
of any radius 0 < r < ∞. There are 14 distinct VT sets of Voronoi tiles and
6 sets DT of Delone tiles, up to a uniform scaling by the factor τ k, τ = 1

2 (1+
√

5)

and k ∈ Z. The number of Voronoi tiles in different quasicrystal tilings varies
between 3 and 12. Similarly, the number of Delone tiles is varying between
4 and 6. There are 7 VT sets of the ‘generic’ type and 7 of the ‘singular’
type. The latter occur for seven precise values of the radius of the acceptance
window. Quasicrystals with acceptance windows with radii in between these
values have constant VT sets, only the relative densities and arrangement of
the tiles in the tilings change. Similarly, we distinguish singular and generic
sets DT of Delone tiles.

PACS numbers: 02.20.Bb, 61.44.Br

1. Introduction

The present paper is the last one in a series [5, 6] where we describe sets VT and DT of Voronoi
and Delone tiles which appear in tilings of certain standard quasicrystal-like point sets. The
three cases differ by the shape of their acceptance windows: rhombus in [5], disc in [6] and
regular decagon here.
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The motivation for studying such problems and the general method for acceptance
windows of any shape, together with some preliminaries indispensable for understanding
and using our method, are presented in [5]. We introduce a method which reduces the search
for distinct Voronoi and Delone tiles in a quasicrystal to a finite problem. In addition, one also
finds there the solution for equilateral rhombic acceptance window oriented along the roots of
the Coxeter group H2 (the dihedral group of order 10).

In [6] and this paper, the method of [5] is used to determine the tiling sets VT and
DT for the circular and decagonal acceptance windows, respectively. The two papers are
self-contained as far as the understanding of the results is concerned. In order to grasp the
comments of the procedure to achieve the results, [5] needs to be consulted.

The quasicrystals of the three papers are infinite two-dimensional point sets constructed
by the cut-and-project method. More precisely, points of the root lattice of the simple Lie
algebra A4 are projected onto two complementary two-dimensional subspaces invariant under
the action of the Coxeter group H2 which is a subgroup of the Weyl group of A4. Under such
projections, the integer coordinates of the A4-lattice points acquire the irrationality given by
the solutions of x2 = x + 1, i.e. the golden ratio τ = 1

2 (1 +
√

5). For more details see for
example [5]. Members of such a family are called H2-quasicrystals. They differ by the shape
and size of their acceptance window.

A motivation for studying the present case, i.e. quasicrystals with decagonal acceptance
window, can be brought up by asking deceivingly simple question: which of the uncountably
many non-isomorphic tilings of the family of H2-quasicrystals are the simplest? An answer
to the question can be given only after one specifies what the superlative ‘simplest’ actually
means. Let us point out some obvious possibilities first.

The ‘simplest’ can be taken to mean the smallest number of distinct shapes of tiles. In
that case the clear winners are the well-known Penrose tilings with two types of tiles only.
However, the Penrose tilings can be taken as a member of our H2-family of quasicrystals
only if we introduce the composition of five different pentagonal acceptance windows,
see [4].

Secondly, the ‘simplest’ can be understood as the one with the simplest acceptance
window. In that case, the disc is certainly much simpler than the composition of five windows
required for the Penrose tiling. Disc window is also simple for any actual computing of
quasicrystal points.

However, if the simplicity should mean a conceptual simplicity of the definition of the
quasicrystal, acceptance window as a regular decagon inscribed in a unit circle has a fair claim
to be the simplest. Indeed, such decagon is a convex hull of the roots of the Coxeter group H2,
therefore the corresponding quasicrystal is completely defined by the properties of the group.
Precisely for that reason, quasicrystals of this type for the groups H2,H3 and H4 are called
canonical. A fraction of a canonical quasicrystal is shown in figure 1 of [3].

The problem solved in this paper is somewhat more general than the canonical quasicrystal
case. We determine all the sets VT and DT of Voronoi and Delone tiles corresponding to tilings
of H2-quasicrystals with the acceptance window being a regular decagon, oriented along the
H2-roots of any radius τ−1 < r � 1. For decagons of radii outside of these bounds, the same
sets VT and DT occur, only scaled by a suitable power of τ .

Specifically, we determine that there are 14 distinct VT sets of Voronoi tiles, seven of
them being singular, each appearing for a single value of r; and there are six sets DT of Delone
tiles with three of them being singular. The Voronoi tiling of the canonical H2-quasicrystal is
the most simple in that its VT and DT set contain three tiles only. Leaving aside the specific
case of the Penrose tilings, it appears that the canonical quasicrystals are the most simple with
respect to their tiling sets.
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2. Preliminaries

Let us now introduce the definition of cut-and-project quasicrystals studied in this paper. Since
our aim is to apply the method of [5] to a specific type of quasicrystal models, we recall only
the necessary facts. Cut-and-project quasicrystals may be defined in a much more general
setting; this is however out of the scope of this work. For general presentation we refer to [5],
where one also finds references to related articles.

The ring of integers in the quadratic field Q(
√

5) is the set Z[τ ] = Z + Zτ , where
τ = 1

2 (1 +
√

5) is the golden ratio. Its algebraic conjugate is denoted by τ ′ = 1
2 (1 − √

5). We

denote � = √
τ + 2. We make use of the Galois automorphism of Q(

√
5):

x = a + bτ �→ x ′ = a + bτ ′.
The root system H2 can be represented in the complex plane by the tenth roots of unity,

ξ j , j = 0, . . . , 9. The simple roots of this system are α1 = ξ 0 = 1 and α2 = ξ 4. All
other roots can be expressed in the basis α1, α2 with only non-negative or only non-positive
coefficients,
ξ 0 = α1, ξ 1 = τα1 + α2, ξ 2 = τα1 + τα2,

ξ 3 = α1 + τα2, ξ 4 = α2, ξ 5+i = −ξ i for i = 0, . . . , 4.

Using the above relations, it is obvious that the Z-span of the root system H2 is in fact a
Z[τ ]-module

M = Z[τ ]α1 + Z[τ ]α2.

One defines a ‘star-map’ on M by

M � x = x1α1 + x2α2, x1, x2 ∈ Z[τ ] �→ x∗ = x ′
1α

∗
1 + x ′

2α
∗
2 ,

where α∗
1 = α1 = 1 and α∗

2 = α2
2 = ξ 8. It is easy to show that the star-map preserves the root

system H2 and is semi-linear with respect to the Galois conjugation ’, i.e. (ux +y)∗ = u′x∗ +y∗

for u ∈ Z[τ ], x, y ∈ M .
With the above notations, one defines a cut-and-project quasicrystal as the set

�(�) = {x ∈ M | x∗ ∈ �},
where � is a bounded set satisfying �◦ = � and is called the acceptance window. The semi-
linearity of the star-map implies an important scaling property of the quasicrystal, namely

τ�(�) = �(τ ′�). (1)

This property allows us to restrict the considerations only to certain sizes of the acceptance
window.

Cut-and-project quasicrystals have many interesting properties. First, they are uniformly
discrete, relatively dense sets (Delone property), they are almost lattices, etc. The properties of
the cut-and-project quasicrystal depend on the choice of the acceptance window �. It is usual
to require � closed or open. The singularities in the cut-and-project quasicrystal caused by
the boundary of � can be avoided if we impose ∂� ∩ M = ∅. In such a case, the quasicrystal
is repetitive, i.e. every finite configuration appears in �(�) with non-zero density, and thus
also every tile in the corresponding Voronoi, resp. Delone tiling has non-zero density.

The specific cut-and-project scheme considered here is chosen for it produces quasicrystal
models with 10-fold symmetry (if the acceptance window has it). If moreover � is chosen
convex, the quasicrystal has abundance of scaling symmetries [2]. The symmetries of the cut-
and-project quasicrystals are consequence of the symmetries of the Z[τ ]-module M, which
are described for example in [1].

In this paper, we consider the acceptance window � to be a regular decagon of any size.
As a consequence of (1), we can assume that the decagon is inscribed in a circle of radius
within the range (τ−1, 1].
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Figure 1. The figure shows the range (1/τ, 1〉 of radius of the decagonal acceptance window r
divided by singular cases. The figure is drawn in scale. Between two Voronoi/Delone singular
cases the set of Voronoi/Delone tiles in tiling does not change.

Table 1. The table shows cases of quasicrystals with decagonal acceptance windows according
to sets of Voronoi and Delone tiles. There are 14 classes of quasicrystals VTm, m = 1, . . . , 14,
which have different Voronoi tiles. In the second column there are a number of Voronoi shapes
in Voronoi tiling. Even cases are singular and they are represented by quasicrystals with specific
size of window, which is denoted in the middle column. On the other hand, there are six classes of
quasicrystals DTm, m = 1, . . . , 6 with decagonal acceptance window, which have different Delone
tiles. In the fourth column there are a number of Delone shapes.

VT1 10

VT2 9 (τ + 2)/5
.= 0.723 606 80

VT3 10 5 DT1

VT4 9 4 − 2τ
.= 0.763 932 02

VT5 10

VT6 6 τ/2
.= 0.809 016 99 5 DT2

VT7 12

VT8 10 (9 − 3τ)/5
.= 0.829 179 61

VT9 10 6 DT3

VT10 9 3τ − 4
.= 0.854 101 97

VT11 9

VT12 5 (4τ − 2)/5
.= 0.894 427 19 4 DT4

VT13 6 6 DT5

VT14 3 1 4 DT6

3. Results

Let � be a decagon given as the convex hull � = 〈{rξ j +s | j = 0, . . . , 9}〉, where r ∈ (τ−1, 1]
and s ∈ C. We focus on the case ∂(�) ∩ M = ∅. Some remarks about the special situation
when ∂� ∩ M �= ∅, i.e. some tiles appear with zero density, are given in section 4.

Using our method it turns out that for the description of the set VT of Voronoi tiles and
DT of Delone tiles in the tiling of �(�), it is necessary to divide the range (τ−1, 1] of sizes
r of � into several subintervals, as shown in figure 1. There are seven subintervals for the
Voronoi tiling and three subintervals for the Delone tiling. This corresponds to the fact that
there are 14 different sets VT1, . . . VT14, where the even indices give the sets of Voronoi tiles
for a singular value of r. Similarly, there are six different sets DT1, . . . DT6, where the even
indices give singular Delone tilings. The singular values of r, together with the number of
tiles in the corresponding VT or DT set are presented in table 1.
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Table 2. The 19 tiles shown in the top table comprise the complete set of Voronoi tiles encountered
in all quasicrystals with decagonal acceptance window. Shapes and relative sizes of the tiles are
maintained. Also shown are the points of quasicrystal which define the tile. For a fixed radius
r of the decagon only a subset VTm of tiles is present in the Voronoi tiling. The entries at the
intersection of a column k and a row VTm indicate the presence of the tile number k in the set
VTm. With each tile there are at most 20 differently oriented copies in the tiling according to
the dihedral group H20. Tiles which are itself symmetric under some subgroup of H20 appear in
smaller number. For more details see the text.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

VT1 • • • • • • • • • •
VT2 • • • • • • • • •
VT3 • • • • • • • • • •
VT4 • • • • • • • • •
VT5 • • • • • • • • • •
VT6 • • • • • •
VT7 • • • • • • • • • • • •
VT8 • • • • • • • • • • •
VT9 • • • • • • • • • • •
VT10 • • • • • • • • •
VT11 • • • • • • • • •
VT12 • • • • • •
VT13 • • • • • • •
VT14 • • •

The sets of Voronoi and Delone tiles are described in tables 2 and 3, respectively. In
the upper parts of the tables the tiles are drawn. The bottom table shows which tiles belong
to a given set VTi or DTi . Note that some shapes of tiles appear in several different sizes.
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Table 3. The eight tiles shown in the top table comprise the complete set of Delone tiles encountered
in all quasicrystals with decagonal acceptance window. Shapes and relative sizes of the tiles are
maintained. For a radius r of the decagon only a subset DTm of tiles is present in the Delone
tiling. The entries at the intersection of a column k and a row DTm indicate the presence of
the tile number k in the set DTm. With each tile there are at most 20 differently oriented copies
in the tiling according to the dihedral group H20. Tiles which are itself symmetric under some
subgroup of H20 appear in smaller number. For more details see the text.

1 2 3 4 5 6 7 8

DT1 • • • • •
DT2 • • • • •
DT3 • • • • • •
DT4 • • • •
DT5 • • • • • •
DT6 • • • •

Just like the circular acceptance window discussed in [6], the decagonal acceptance window
is symmetric with respect to the transformations of the dihedral group of order 20, i.e. H20.
Since the Z[τ ]-module M has the same symmetry, each Voronoi and also Delone tile may
appear in 20 orientations in the quasicrystal. However, certain tiles among those given in
tables 2 and 3 are invariant under some of the transformations of H20.

As it was explained in [5], we can determine the type of the Voronoi tile of a chosen point
x ∈ �(�) according to the position of its star-map image x∗ in the acceptance window. In
fact, the decagonal acceptance window splits into a finite number of regions. Points having
their star-map image in one region have the same type of the Voronoi tile. The volume of
the region is proportional to the density of the corresponding tile in the Voronoi tiling. The
division of the decagonal acceptance window is shown in figures 2–4. Due to the mentioned
symmetries, we show only a section of angle 2π/10, which characterizes the division of the
entire decagon. The regions on figures are marked with numbers. The numbering of regions
corresponds to the numbering of types of tiles in table 2.

The division of the acceptance window changes with changing size r. Within a subinterval
of r ∈ (τ−1, 1] which corresponds to one non-singular case, the arrangement of the regions is
the same, but the relative sizes (densities of tiles) change.

With decreasing r, we arrive at a singular value of r. This corresponds to a size of the
acceptance decagon, where some of the regions in the division disappear, as is illustrated in
figure 5. The region reduces to a point or a line segment, which is marked bold in figures 2–4.
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VT1

VT2

VT3

VT4

VT5

Figure 2. Division of decagonal acceptance window (part 1). Each region in the acceptance
window corresponds to a different Voronoi tile. The numbers which denote these regions are the
numbers of the corresponding Voronoi tiles from table 2. The parts of the window that correspond
to tiles with zero density are marked in bold.

Since we have assumed that the boundary ∂� has an empty intersection with M, the point,
resp. line segment also does not contain any element of M, and thus it does not generate a
Voronoi tile with zero density.

An example of the most simple Voronoi and Delone tilings is shown in figure 6. It
corresponds to the case of decagonal acceptance window with r = 1, i.e. to the singular
cases VT14 and DT6. Thus according to tables 2 and 3, there are only three types of Voronoi
tiles and four types of Delone tiles. Each of the tiles has a non-zero density. For that
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VT6

VT7

VT8

VT9

VT10

Figure 3. Division of decagonal acceptance window (part 2). Each region in the acceptance
window corresponds to a different Voronoi tile. The numbers which denote these regions are the
numbers of the corresponding Voronoi tiles from table 2. The parts of the window that correspond
to tiles with zero density are marked in bold.

we needed that the intersection of the boundary of � with the Z[τ ]-module M is empty.
For the size r = 1 this can be reached only if the acceptance window is centred at a
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VT11

VT12

VT13

VT14

Figure 4. Division of decagonal acceptance window (part 3). Each region in the acceptance
window corresponds to a different Voronoi tile. The numbers which denote these regions are the
numbers of the corresponding Voronoi tiles from table 2. The parts of the window that correspond
to tiles with zero density are marked in bold. Note that the case VT14 is the canonical quasicrystal
with r = 1.

point not belonging to M. Thus, the corresponding tiling does not reveal a global 10-fold
symmetry.

Another example of a tiling in which every tile has a non-zero density is found in figure 7.
Here we consider as the acceptance window a decagon of radius r = τ/� + 1/τ 6, which
corresponds to the non-singular cases VT13 and DT5. Here we have ∂� ∩ M = ∅ even if the
decagon is centred at the origin. Therefore, the tiling has a global 10-fold symmetry.
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Figure 5. Acceptance window of a singular and non-singular case.

4. Tiles with zero density

So far we have studied the case that the boundary ∂� of acceptance window � has an
empty intersection with the Z[τ ]-module M. Thus, every tile appears with a non-zero density.
Relaxing the condition ∂� ∩ M = ∅ may not be interesting for physics, because the resulting
tilings are no longer repetitive and do not belong to the same local isomorphism class as the
non-singular ones, although the acceptance window has the same shape and size. However, for
completeness, we explain the peculiarities which may occur in this case. Either the Voronoi
or Delone tiling of the set �(�) contains a tile which appears only finitely many times, or
even there are some tiles which appear infinitely many times, but still with vanishing density.
This phenomena depends on the cardinality of the intersection of the boundary ∂� with the
Z[τ ]-module M. For the case of the circular acceptance window treated in [6] the intersection
was always finite, cf [7]. In contrast, the boundary of the decagonal acceptance window may
contain infinitely many points of M.

If the intersection ∂� ∩ M is non-empty, the boundaries of the regions in the division of
� contain points of M. Thus for certain values of r, there occur some Voronoi tiles which have
density 0 in the tiling. The star map images of points with such exceptional tiles lie on the
bold marked points/line segments in figures 2–4.

As an example of what may happen, let us consider the decagonal acceptance window
inscribed in a unit circle (r = 1), now centred at the origin, i.e. again the singular cases VT14

and DT6. The corresponding Voronoi and Delone tilings are shown in figure 8. Clearly, the
line segments marked bold in figure 4 contain infinitely many points of M, thus the Voronoi
and Delone tilings contain tiles which appear infinitely many times, but with zero density.
These tiles are arranged along the axes of 10-fold rotation symmetry.

5. Concluding remarks

There are a number of observations one can make concerning VT and DT tile sets for the three
shapes of quasicrystal acceptance windows we have solved in [5, 6] and in this paper.

• Delone tilings are considerably simpler than Voronoi ones, although their determination
required a classification of fans of Voronoi tiles. Our method can be directly used, without
serious modification, for studying other clusters of tiles.
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Figure 6. Voronoi and Delone tilings of a quasicrystal with decagonal acceptance window for the
most simple cases VT14 and DT6, with ∂� ∩ M = ∅. The tiling has only three types of Voronoi
tiles and four types of Delone tiles.

• In all cases we have studied there are only four different shapes of Delone tiles; a DT set
may contain several scaled copies of one shape.

• From our study one can possibly learn how the VT and DT sets are modified during
continuous changes of the acceptance window. How much the acceptance window can be
deformed while preserving the shapes of tiles? In particular, what class of quasicrystals
preserves the four shapes of Delone tiles?

• There are other shapes of acceptance windows which would be interesting and not any
more difficult to study. Most notably regular pentagons and decagons that are not regular,
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Figure 7. Voronoi and Delone tilings of a quasicrystal with decagonal acceptance window centred
at the origin for cases VT13 and DT5. The radius of the acceptance window is r = τ/� + 1/τ 6.
This is a non-singular case.

but still generated by H2-reflections of a single point, or pentagons and decagons not
oriented as the roots of H2.

• We do not expect additional difficulties if the method is extended to tilings of two-
dimensional quasicrystals with local symmetries of dihedral groups of higher orders.

• In three dimensions, a similar study appears prohibitively laborious, the large number of
tiles in VT and DT sets being the least of the obstacles. Determination of some singular
radii of acceptance windows certainly would be possible; to find them all by our method
would require special 3D-graphic capabilities.
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Figure 8. Voronoi and Delone tilings of a quasicrystal with decagonal acceptance window inscribed
in the unit circle centred at the origin, i.e. cases VT14 and DT6. Since the window is centred at the
origin, its boundary has an infinite intersection with the Z[τ ]-module M, and thus the Voronoi and
Delone tilings contain tiles which appear infinitely many times, but with zero density.
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